PHYSICAL / INORGANIC **CHEMISTRY**

DPP No. 20

Total Marks: 44

Max. Time: 52 min.

Topic: Ionic Equilibrium

Type of Questions

M.M., Min.

Single choice Objective ('-1' negative marking) Q.1 to Q.4

(3 marks, 3 min.)

[12, 12]

Subjective Questions ('-1' negative marking) Q.5 to Q.12

(4 marks, 5 min.)

[32, 40]

- 1. (a) The solubility of A₂X is y mol dm⁻³. Its solubility product is:
 - (A) $6 v^4$
- (B) 64 v⁴
- (C) 36 v⁵
- (D) $4 v^3$
- (b) The solubility of sparingly soluble electrolyte M_mA_a in water is given by the expression :

(A)
$$s = \left(\frac{K_{sp}}{m^m a^a}\right)^{m+a}$$

(B)
$$s = \left(\frac{K_{sp}}{m^m a^a}\right)^{1/m}$$

(C)
$$s = \left(\frac{K_{sp}}{m^a a^m}\right)^{m-1}$$

(A)
$$s = \left(\frac{K_{sp}}{m^m a^a}\right)^{m+a}$$
 (B) $s = \left(\frac{K_{sp}}{m^m a^a}\right)^{1/m+a}$ (C) $s = \left(\frac{K_{sp}}{m^a a^m}\right)^{m+a}$ (D) $s = \left(\frac{K_{sp}}{m^a a^m}\right)^{1/m+a}$

- 2. Three sparingly soluble salts M2X, MX and MX2 have the solubility product are in the ratio of 4:1:27. Their solubilities will be in the order
 - (A) $MX_2 > MX > M_2X$
- (B) $MX_3 > M_2X > MX$ (C) $MX > MX_3 > M_2X$
- (D) $MX > M_2X > MX_2$
- 3. A student wants to prepare a saturated solution of Ag $^+$ ion . He has got three samples AgCl (K_{sp} = 10 $^{-10}$), AgBr (K_{sn} = 1.6 × 10⁻¹³) and Ag₂CrO₄ (K_{sn} = 3.2 × 10⁻¹¹) . Which of the above compound will be used by him using minimum weight to prepare 1 lit. of saturated solution.
 - (A) AgCI
- (B) AgBr
- (C) Ag₂ CrO₄
- (D) all the above
- The solubility product of AgCl is 4.0×10^{-10} at 298K. The solubility of AgCl in 0.04M CaCl₂ will be: 4.
 - (A) 2.0×10^{-5} M
- (B) 1.0×10^{-10} M
- (C) 5.0×10^{-9} M
- (D) $2.2 \times 10^{-4} \text{ M}$
- 5. Calculate the solubility of A_2X_3 in pure water, assuming neither kind of ion reacts with water. For A_2X_3 , $K_{nn} = 1.08 \times 10^{-23}$.
- 6. A particular saturated solution of silver chromate, $Ag_{2}CrO_{4}$, has $[Ag^{+}] = 5 \times 10^{-5}$ and $[CrO_{4}^{2-}] = 4.4 \times 10^{-4}$ M. What is value of K_{sn} for Ag₂CrO₄?
- If the solubility product of silver oxalate is 5×10^{-10} , what will be the weight of Ag₂C₂O₄ in 2.5 litres of a 7. saturated solution?
- Calculate the solubility of AgCI (s) in pure water and in 0.1 M NaCI at 25° C. 8. K_{cn} (AgCl) = 2.56 × 10⁻¹⁰. Comment on the influence of [Cl⁻] on the solubility of AgCl.
- 9. The solubility product of AgCl in water is 1.5×10^{-10} . Calculate its solubility in 0.01 M NaCl aqueous solution.
- 10. The solubility product of SrF_2 in water is 8 × 10⁻¹⁰. Calculate its solubility in 0.1 M, NaF aqueous solution.
- 11. The solubility of CaF $_2$ in water at 1518°C is 2 × 10 $^{-4}$ mole/litre. Calculate K $_{\rm sp}$ of CaF $_2$ and its solubility in 0.1M NaF solution.
- 12. The solubility product of BaSO $_{_{\! 4}}$ is $~1.6\times10^{-9}$. Find out its solubility in ,
 - (i) pure water
 - (ii) 0.1 M BaCl_a.

Answer Key

DPP No. # 20

1. (a) (D) (b) (B) 2. (B) 3. (B) 4. (C)

5. $10^{-5} \, \text{mol L}^{-1}$ 6. 1.1×10^{-12} 7. $0.38 \, \text{gm}$.

8. (i) 1.6×10^{-5} mol/lit. (ii) 2.56×10^{-9} mol/lit.

9. $s = 1.5 \times 10^{-8} \text{ mol/l}^{-1}$ 10. $s = 8 \times 10^{-8} \text{ M}$. 11. $K_{sp} = 3.2 \times 10^{-11}$, $[Ca^{2+}] = 3.2 \times 10^{-9} \text{ mole/litre}$.

12. (i) 4×10^{-5} mole per litre (ii) 1.6×10^{-8} mol per litre.

